Title L-moments, Trimmed L-moments, L-comoments, and Many Distributions Version 0.97.4 Depends R (> = 2.7.0), utils Date 2009-10-28

نویسنده

  • William H. Asquith
چکیده

Description The package implements the statistical theory of L-moments including L-moment estimation, probability-weighted moment estimation, parameter estimation for numerous familiar and not-so-familiar distributions, and L-moment estimation for the same distributions from the parameters. L-moments are derived from the expectations of order statistics and are linear with respect to the probabilityweighted moments. L-moments are directly analogous to the well-known product moments; however, L-moments have many advantages including unbiasedness, robustness, and consistency with respect to the product moments. This package is oriented around the FORTRAN algorithms of J.R.M. Hosking, and the nomenclature for many of the functions parallels that of the Hosking library. However, numerous extensions are made to aid in expand of the breadth and ease of L-moment application. Much theoretical extension of L-moment theory has occurred in recent years. E.A.H. Elamir and A.H. Seheult have developed the trimmed L-moments, which are implemented in this package. Further, recent developments by Robert Serfling and Peng Xiao have extended L-moments into multivariate space; the so-called sample L-comoments are implemented here. The supported distributions with moment type shown as L (L-moments) or TL (trimmed L-moments) and additional support for right-tail censoring ([RC]) include: Cauchy(TL), Exponential(L), Gamma(L), Generalized Extreme Value(L), Generalized Lambda(L & TL), Generalized Logistic (L), Generalized Normal(L), Generalized Pareto(L[RC] & TL), Gumbel(L), Normal(L), Kappa(L), Pearson Type III(L), Reverse Gumbel(L[RC]), Wakeby(L), and Weibull(L).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Contribution to Multivariate L-Moments: L-Comoment Matrices

Multivariate statistical analysis relies heavily on moment assumptions of second order and higher. With increasing interest in modeling with heavy tailed distributions, however, it is desirable to describe dispersion, skewness, and kurtosis of multivariate distributions under merely first order moment assumptions. Here we present a new method contributing toward this goal in both parametric and...

متن کامل

Suggests copBasic, Lmoments Date 2013-02-15

Description The package implements the statistical theory of L-moments in R including L-moment estimation, probability-weighted moment estimation, parameter estimation for numerous familiar and not-so-familiar distributions, and L-moment estimation for the same distributions from the parameters. L-moments are derived from the expectations of order statistics and are linear with respect to the p...

متن کامل

Comparison of GLD Fitting Methods: Superiority of Percentile Fits to Moments in L^2 Norm

The flexibility of the family of Generalized Lambda Distributions (GLD) has encouraged researchers to fit GLD distributions to datasets in many circumstances. The methods that have been used to obtain GLD fits have also varied. This paper compares, for the first time, the relative qualities of three GLD fitting methods: the method of moments, a method based on percentiles, and a method that use...

متن کامل

Low flow frequency analysis by L-moments method (Case study: Iranian Central Plateau River Basin)

Knowledge about low flow statistics is essential for effective water resource planning and management in ungauged orpoorly gauged catchment areas, especially in arid and semi-arid regions such as Iran. We employed a data set of 20 riverflow time-series from the Iranian Central Plateau River Basin, Iran to evaluate the low-flow series using several frequencyanalysis methods and compared the resu...

متن کامل

Robust parameter estimations using L-moments, TL-moments and the order statistics

Application of the method of moments for the parametric distribution is common in the construction of a suitable parametric distribution. However, moment method of parameter estimation does not produce good results. An alternative approach when constructing an appropriate parametric distribution for the considered data file is to use the so-called order statistics. This paper deals with the use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009